
REAL-TIME IMPLEMENTATION OF NON-LINEAR PHYSICAL MODELS WITH
MODAL SYNTHESIS AND PERFORMANCE ANALYSIS

Alessandro CERIOLI(alexcerio92@gmail.com)(acerio19@student.aau.dk)1,
Michele DUCCESCHI(michele.ducceschi@unibo.it)2, and Stefania SERAFIN(sts@create.aau.dk)1

1Aalborg University, Copenhagen, Denmark
2University of Bologna, Bologna, Italy

ABSTRACT

Modal decomposition is a popular analysis approach in-
volving the description of a target system via a bank of
resonant oscillators called modes. Early sound synthesis
frameworks successfully exploited this idea for the simu-
lation of vibrating objects such as bars, plates and strings.
While popular, modal synthesis is often applied to linear
systems, since the modes become densely coupled in sys-
tems presenting distributed or multiple nonlinearities. In
this work, the modal approach is used for the simulation
of nonlinearly connected systems. When the nonlinearity
is of cubic type, a suitable energy-stable modal update can
be derived requiring the solution of a single linear system
at each time step. A working plugin written in the C++
programming language is presented. Moreover, the per-
formance of the plugin is analysed considering systems
of different dimensions, defining the current limits for a
real-time application of these models. The analysis also
revealed a linear correlation between the number of modes
which compose the systems and the CPU usage necessary
for their real-time computation.

1. INTRODUCTION

The analysis of linear, time-invariant systems by superpo-
sition of modes is a longstanding idea, tracing back to the
early works by Daniel Bernoulli on the vibrating string [1],
and later formalised by Fourier [2]. Time-invariance and
linearity allow to describe systems in terms of eigenfunc-
tions and frequencies, called the modes of the system [3,4].
Such modal shapes and frequencies may be either deter-
mined experimentally, or starting from a suitable math-
ematical model. In the latter case, the model is in the
form of a system of partial difference equations (PDEs),
depending on material and geometric properties, type of
the excitation, initial and boundary conditions [5]. Modal
equations result after an appropriate projection is applied
to the system of PDEs, yielding an eigenvalue problem,
from which the modal frequencies and shapes are deter-
mined. The resulting modal equations depend exclusively
on time, and output may be extracted as a suitable combi-

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

nation of the time-dependent modal coordinates. Usually,
one is interested in computing a physical output at one or
more points of the system, via a weighted sum resulting
from an inverse projection.

Other than being a useful analysis tool, this approach
lends itself naturally to the simulation of mechanical vi-
brations, and thus to sound synthesis via physics-based
modelling. Modal synthesis began in earnest in the 1990s,
when frameworks such as Mosaic [6] and Modalys [7]
emerged. The early success of modal synthesis was partly
due to the ease of implementation, and efficiency, of the
modal structure: the orthogonality of the modes yields a
bank of parallel damped oscillators. The inclusion of com-
plicated loss profiles (necessary for realistic sound synthe-
sis) is also trivial and inexpensive within the modal frame-
work, as is the fine-tuning of the system’s resonances, see
e.g. [8].

In direct numerical simulation, such as finite differ-
ences, distributed nonlinearities can be resolved locally,
and in some cases efficiently, via linearly-implicit schemes
[9,10]. For the modal approach, the presence of nonlinear-
ities, either lumped or distributed, may become problem-
atic, since a coupling takes place between the modes of the
associated linear system [11].

In this work, an extension of the modal approach, includ-
ing nonlinearly coupled subsystems, is presented. In the
work by Bilbao and Webb, using finite differences [12],
simple objects such as bars and plates are connected non-
linearly using springs of cubic type. The same systems and
connections are used here. The results are directly imple-
mented in a working plugin, whose performance is tested.

The article is structured as follows. In Sec. 2, the con-
tinuous models are given, along with an energy analysis.
Modal expansions are derived for the systems in isolation,
as well as for two coupled subsystems. A suitable energy-
passive finite difference scheme is offered. In Sec. 3 the
C++ implementation is discussed, along with the plugin ar-
chitecture, and in Sec. 4 the performance of the plugin is
assessed, for increasing system sizes.

2. IMPLEMENTED MODELS

In this section, the mathematical formalism is introduced,
along with notation. The modal approach will be devel-
oped starting from a system in isolation, and then extended
to include nonlinearly connected objects.

mailto:alexcerio92@gmail.com
mailto:acerio19@student.aau.dk
mailto:michele.ducceschi@unibo.it
mailto:sts@create.aau.dk
http://creativecommons.org/licenses/by/4.0/


2.1 Isolated Systems

Consider an isolated system, either a bar, a string or a plate,
described by a PDE of the form(︀

𝑚𝜕2
𝑡 + ℒ

)︀
𝑢(𝑡,x) = 0. (1)

In this equation, 𝑢(𝑡,x) is the displacement of the vibrating
object, depending on time 𝑡, as well as on the spatial coor-
dinate x ∈ 𝐷 = Π𝑎

𝑠=1[0, 𝐿𝑠], where 𝑎 ∈ {1, 2}, and where
𝐿𝑠 is the side length. In practice, 𝐷 is either a one- or a
two-dimensional rectangular domain. Here, ℒ is a linear,
time-invariant spatial differential operator, obtained from a
suitable physical model of the target object. For the sys-
tems considered here, one has

ℒ =

2∑︁
𝑗=1

(−1)𝑗𝛼𝑗∆
𝑗 , (2)

where ∆ is the 𝑎-dimensional Laplacian, and where 𝛼𝑗 ≥
0 are coefficients. For the moment, we may assume that
losses are not included in the system, such that in (1) en-
ergy remains constant. Finally, 𝑚 specifies the mass per
unit length𝑎, and the symbol 𝜕𝑝

𝑡 indicates the p𝑡ℎ partial
time derivative.

In order to fully specify the motion, (1) must be com-
pleted by suitable initial and boundary conditions. Since
the problem is second-order in time, initial conditions are
usually given as

𝑢(0,x) = 𝑢0(x), 𝜕𝑡𝑢(0,x) = 𝑣0(x). (3)

Boundary conditions may be harder to get to. As a use-
ful guiding principle, an appropriate energy analysis leads
in most cases to the correct expressions for the boundary
conditions. For the two (either vector or scalar) square-
integrable functions f , g, the inner product and norm are
introduced as [13]

⟨f ,g⟩ =

∫︁
𝐷

f · g dx, ‖f‖ =
√︀

⟨f , f⟩, (4)

where the dot operation is the Euclidian scalar product (re-
ducing to the common multiplication when the functions
are scalar). Taking the inner product of (1) with 𝜕𝑡𝑢, after
appropriate integration by parts, results in

𝑑

𝑑𝑡
𝐻 = 𝐵, (5)

where 𝐻 is the total energy of the system, and where 𝐵
are boundary terms. Explicit expressions for the boundary
terms are given as 1

𝐵 =

∮︁
Γ

𝜕𝑡𝑢 (𝛼1∇𝑢− 𝛼2∇∆𝑢) ·dΓ+

∮︁
Γ

𝛼2∆𝑢∇(𝜕𝑡𝑢) ·dΓ,

where Γ is the outwardly oriented contour of the domain D.
Among the possible combinations of boundary conditions,
the simply-supported type lead to a closed-form solution

1 In the case of the plate, as a cautionary note, it is remarked that
the energy analysis presented here is valid only under simply-supported
boundary conditions. For other types of boundary conditions, the energy
analysis must be modified, see e.g. [13].

for the modes, as will be seen shortly. Such conditions are
given as

𝑢 = ∆𝑢 = 0, along Γ. (6)

Energy conservation is achieved under such choice. One
therefore has

𝐻(𝑡) = 𝐻(𝑡 = 0) , 𝐻0, (7)

where the form of the total energy depends exclusively on
the initial conditions (3). The energy is expressed as the
sum of kinetic and potential energy components, as

𝐻 =
𝑚 ‖𝜕𝑡𝑢‖2

2
+

𝛼1 ‖∇𝑢‖2

2
+

𝛼2 ‖∆𝑢‖2

2
. (8)

From such energy conservation, it results that

‖𝜕𝑡𝑢‖ ≤
√︀

2𝐻0/𝑚, (9)

and hence the norm of the velocity remains bounded over
time.

2.1.1 Model Coefficients

Two subsystems are considered here: the string/bar, and
the plate. For the string/bar, one has

𝑎 = 1, 𝑚 = 𝜌𝐴, 𝛼1 = 𝑇, 𝛼2 = 𝐸𝐼, (10)

whereas for the plate, one has

𝑎 = 2, 𝑚 = 𝜌ℎ, 𝛼1 = 0, 𝛼2 = 𝐷. (11)

In the above, 𝜌 is the volume density, 𝐴 is the area of the
cross section, 𝐸 is Young’s modulus, 𝐼 is the area moment
of inertia, ℎ is the thickness, and 𝐷 is the flexural rigidity.

2.2 Modal Decomposition

A modal decomposition is assumed for 𝑢(𝑡,x). This is

𝑢(𝑡,x) = Xᵀ(x)q(𝑡), (12)

where both X, q are column vectors of length 𝑁 . In the-
ory, 𝑁 is infinite, though it will be truncated to an integer
according to Nyquist-like requirements, as detailed below.
Since simply-supported conditions over a rectangular do-
main are assumed, one has

𝑋𝑛(x) = Π𝑎
𝑠=1 sin

(︂
𝑛𝑠𝜋𝑥𝑠

𝐿𝑠

)︂
, 𝑛 = 1, ..., 𝑁. (13)

Inserting (12) into (1), multiplying on the left by X, and
integrating, gives

𝑚

(︂∫︁
𝐷

XXᵀ dx

)︂
q̈ +

(︂∫︁
𝐷

XℒXᵀ dx

)︂
q = 0. (14)

Carrying out the integrations, one has∫︁
𝐷

XXᵀ dx =

(︂
Π𝑎

𝑠=1

𝐿𝑠

2

)︂
I, (15a)∫︁

𝐷

XℒXᵀ dx = 𝑚

(︂
Π𝑎

𝑠=1

𝐿𝑠

2

)︂
Ω2

0. (15b)



Here, I is the 𝑁 ×𝑁 identity matrix, and Ω0 = diag [𝜔𝑛]
is an 𝑁 ×𝑁 diagonal matrix whose diagonal elements are
the resonant frequencies 𝜔𝑛. Direct expressions for such
frequencies are

𝜔𝑛 =

⎯⎸⎸⎷𝛼1

𝑎∑︁
𝑠=1

𝑛2
𝑠𝜋

2

𝐿2
𝑠

+ 𝛼2

(︃
𝑎∑︁

𝑠=1

𝑛2
𝑠𝜋

2

𝐿2
𝑠

)︃2

. (16)

In practice, the original PDE (1), after the modal projection
(14), is now written as

q̈ + Ω2
0q = 0. (17)

It is seen that the modal projection, effectively reduced the
original PDE to a set of parallel ordinary differential equa-
tions (ODEs). It is remarked that the total energy (8) can
now be expressed as a sum over the energy of uncoupled
modes, as

𝐻 = 𝑚

(︂
Π𝑎

𝑠=1

𝐿𝑠

2

)︂ 𝑁∑︁
𝑛=1

(︂
𝑞2𝑛
2

+
𝜔2
𝑛𝑞𝑛
2

)︂
. (18)

2.3 Coupled Subsystems

Two subsystems may be coupled as follows:(︀
𝑚𝑢𝜕

2
𝑡 + ℒ𝑢

)︀
𝑢(𝑡,x) = 𝛿(x− x𝜂)𝐾(𝑡)𝜂(𝑡), (19a)(︀

𝑚𝑤𝜕
2
𝑡 + ℒ𝑤

)︀
𝑤(𝑡,y) = −𝛿(y − y𝜂)𝐾(𝑡)𝜂(𝑡) (19b)

𝜂(𝑡) = 𝑤(𝑡,y𝜂) − 𝑢(𝑡,x𝜂), (19c)

𝐾(𝑡) = 𝐾𝑙 + 𝐾𝑐𝜂
2(𝑡). (19d)

In practice, the two subsystems are connected via a non-
linear connection, expressed as the sum of a linear and a
cubic spring. The springs’ stiffness constants are denoted
𝐾𝑙 and 𝐾𝑐. The contact points are given as x𝜂 and y𝜂 , re-
spectively. It is remarked that such system is conservative,
since the total energy is expressed as

𝐻 = 𝐻𝑢 + 𝐻𝑤 + 𝐻𝜂, (20)

where

𝐻𝜂 = 𝜂2
(︂
𝐾𝑙

2
+

𝐾𝑐

4
𝜂2
)︂
,

and where 𝐻𝑢, 𝐻𝑤 are the energies of the isolated subsys-
tems, with expressions analogous to (8).

In order to reduce this system to a modal form, one writes

𝑢(𝑡,x) = Xᵀ(x)q𝑢(𝑡), 𝑤(𝑡,y) = Yᵀ(y)q𝑤(𝑡). (21)

Then, expansions analogous to (12) and (13) are assumed
valid for X, Y. Doing a modal projection over X in (19a),
and over Y in (19b), results in

q̈ +
(︀
Ω2

0 + Ω2
𝜂

)︀
q = 0. (22)

This is a generalisation of (17), including the effects of
coupling. In the above, one has

q =

[︂
q𝑢

q𝑤

]︂
,Ω0 =

[︂
Ω𝑢

0 0
0 Ω𝑤

0

]︂
. (23)

The constant frequencies Ω𝑢
0 , Ω𝑢

0 are the resonant frequen-
cies of the two subsystems in isolation, given by (16). The
state-dependent frequencies are expressed as

Ω2
𝜂 = N

(︀
𝐾𝑙 + 𝐾𝑐𝜂

2
)︀ [︂−X(x𝜂)

Y(y𝜂)

]︂ [︂
−X(x𝜂)
Y(y𝜂)

]︂ᵀ
(24)

where the normalisation matrix is

N =

⎛⎝ 1
𝑚𝑢

(︁
Π𝑎

𝑠=1
2
𝐿𝑢

𝑠

)︁
I𝑢 0

0 1
𝑚𝑤

(︁
Π𝑎

𝑠=1
2

𝐿𝑤
𝑠

)︁
I𝑤

⎞⎠ (25)

2.4 Loss, Forcing and Output

The modal scheme (22) can be modified so to include loss
and forcing, trivially, as

q̈ + Cq̇ +
(︀
Ω2

0 + Ω2
𝜂

)︀
q = r𝑓(𝑡). (26)

Here, C is a symmetric, positive-definite matrix, and r is a
matrix of input weights. These may be computed directly
by projecting the input onto the modes, but one may of
course assign different input weights for sound synthesis
purposes. Output is extracted simply as

𝑔𝑢(𝑡) =

𝑁𝑢∑︁
𝑗=1

𝛽𝑢
𝑗 𝑞

𝑢
𝑗 (𝑡), 𝑔𝑤(𝑡) =

𝑁𝑤∑︁
𝑗=1

𝛽𝑤
𝑗 𝑞

𝑤
𝑗 (𝑡), (27)

and again, the weights 𝛽𝑗 may be computed by project-
ing the output point onto the modes, though one is free to
choose any combination of weights. Multiple outputs are
obtained by simply computing multiple sums with differ-
ent sets of weights.

2.5 Finite Difference Schemes

Integration of (26) may be performed via a suitable fi-
nite difference scheme. To that end, time is discretised by
means of a sample rate 𝑓𝑠 = 1/𝑘, where 𝑘 is the time step.
In practice, the solution is evaluated at the time steps 𝑘𝑛,
where 𝑛 ∈ N. Approximations to the time derivatives, and
to the identity, are given here as

𝑑𝑞

𝑑𝑡
→ 𝛿𝑞𝑛 ,

𝑞𝑛+1 − 𝑞𝑛−1

2𝑘
, (28a)

𝑑2𝑞

𝑑𝑡2
→ 𝛿(2)𝑞𝑛 ,

𝑞𝑛+1 − 2𝑞𝑛 + 𝑞𝑛−1

𝑘2
, (28b)

1𝑞 → 𝜇𝑞𝑛 ,
𝑞𝑛+1 + 𝑞𝑛−1

2
. (28c)

A finite difference scheme, approximating (26), is then
given as

𝛿(2)q𝑛 + C 𝛿q𝑛 + Ω2
0 q

𝑛 + Ω2
𝜂 𝜇q

𝑛 = r𝑓𝑛. (29)

The particular form shown here is energy-passive, with a
form of the numerical energy discretising (20), plus dissi-
pation (not shown here for brevity). This discrete energy is
also non-negative, whenever the time step satisfies [13]

𝑘 < 2/𝜔𝑛, ∀𝑛. (30)



Figure 1. The structure of a connected model class is di-
vided in five sections: one for the manipulation of the first
subsystem’s parameters, one for the manipulation of the
second subsystem’s parameters, one for the connected sys-
tem’s parameters, one for the update methods and one for
the computation of the next samples.

Here, 𝜔𝑛 is the n𝑡ℎ characteristic frequency of either one of
the two subsystems, given in (16). In particular, this condi-
tion fixes 𝑁𝑢, 𝑁𝑤, the largest amount of modes available
for the two subsystems, for a given value of sample rate.
It is remarked that the state-dependent nonlinearity is here
approximated implicitly, such that the stability condition
above arises solely as a consequence of the discretisation
of the linear part. It is noted also that scheme (29) is in
fact linearly-implicit, in that the solution of a single lin-
ear system is required at each time step, making the update
efficient and suited for real-time synthesis.

3. C++ MODEL IMPLEMENTATION

In this section, the implementation of the model in plugin
form is discussed. The first step for both the creation of the
connected models and the same implementation in a real-
time system is the development of the sub-systems model.
The model implemented in Matlab programming language
is used as a landmark for the successive development of
the plugin in C++. As a result, firstly a complete model
is developed, or rather a class which contained all the typ-
ical attributes of the sub-systems and the portion of code
related to the processing of the next samples as well. Suc-
cessively, for the implementation of the connected mod-
els, the classes used were exactly the same, but without
the portions of code dedicated to the computation of the
model. As a matter of fact, this part is implemented inside
the class related to the connected model and consequently
the sub-system class can be mostly considered as an aux-
iliary class where the updated parameters are stored, see
figure 1.

3.1 Plugin Description

The plugin allows to select the three models previously
described, offered as presets. In the plugin the user can
manipulate different parameters (see figure 2) such as the
damping; it is possible to choose both the model and the
excitation type.

Figure 2. Here is reported the spectrogram of the string-
plate model considering the plugin’s default parameters
and the note C5. In (a) both the excitation the output are
applied to the string sub-system; in (b) they are instead ap-
plied to the plate sub-system.

Figure 3. In (a) the model selection menu, in (b) the model
panel, in (c) the excitation type menu, in (d) the ADSR
panel, in (e) the sliders to control the output gain and the
input intensity respectively, in (f) a box where the param-
eters of the models are shown and finally in (g) the key-
board.

The plugin is composed of different sections (see figure
3):

• Excitation Type Selection Menu: There are five dif-
ferent types of excitation available: the sine wave-
form, the square waveform, the sawtooth waveform,
the triangle waveform and the raised cosine. The
first four types of excitations mentioned are pure
digital sound processing components, synthesized
with wavetable synthesis [14]. This allows to use
the model not as an instrument, but as a resonator.
The raised cosine [13] has a stricter physical mean-
ing of an impulse and it uses the system as an in-
strument. As a result, in this case the pitch is given
by the same system, for example by changing ap-
propriate parameters. In order to tune the string, the
following expression case be used:

𝜔𝑛 =

√︃
𝑇

𝜌𝐴

(︁𝑛𝜋
𝐿

)︁2
+

𝐸𝐼

𝜌𝐴

(︁𝑛𝜋
𝐿

)︁4
Considering that 𝜔𝑛 = 2𝜋𝑓𝑛 and that for the funda-
mental frequency 𝑛 = 1, we can adjust the tension



of the string and to fix all the other parameters to
obtained the desired pitch:

𝑇 = 𝜌𝐴

(︂
𝐿

𝜋

)︂2

(2𝜋𝑓0)
2 − 𝐸𝐼

(︁𝜋
𝐿

)︁2
(31)

An analogue procedure can be used to tune the plate,
but considering the 𝜔𝑛 value associated to the plate
with 𝑛𝑥 = 1 and 𝑛𝑦 = 1.

• ADSR Menu: when the waveforms such as the sine
wave, the square wave, the sawtooth wave and the
triangle wave are used as input, they could be sus-
tained potentially for an infinite amount of time. In
these cases, the application of an ADSR (Attack-
Decay-Sustain-Release) provides the user the pos-
sibility to use the physical model as a resonator. The
plugin presents a panel containing four sliders: one
for the attack time, one for the decay time, one for
the sustain time and one for the release time.

• Gain slider: The gain slider is useful in order to scale
the output of the models, since different models can
return different levels of amplitude.

• Input slider: The input slider allows to calibrate the
intensity of the input. Therefore, in the case of a
waveform, the input intensity represents the ampli-
tude; similarly, for the raised cosine function, it rep-
resents the peak value.

• Parameters display: The parameters display is a text
box where all the values of the parameters are shown
for all the presets proposed. A lot of parameters
of the model actually affect the pitch; consequently,
they cannot be changed arbitrarily by the user. Nev-
ertheless, in the parameters display all the values can
be monitored.

• Model selection menu: the model selection menu is
useful to choose the preset model to play. It is com-
posed of four options: ”string-string model”, ”plate-
plate model”, ”string-plate model”, ”no model” (this
further option allows to directly play the input exci-
tation).

• String-string model panel: this panel is visible when
the ”string-string model” option is selected in the
model selection menu. It allows to manipulate the
following parameters of the string-string model: the
frequency dependent damping, the frequency inde-
pendent damping and the radius of the two string,
as well as where the excitation is applied and from
where the output is extrapolated.

• Plate-plate model: this panel is visible when the
”plate-plate model” option is selected in the model
selection menu. It allows to manipulate the follow-
ing parameters of the plate-plate model: the fre-
quency dependent damping, the frequency indepen-
dent damping of the two plates as well as where the
excitation is applied and from where the output is
extrapolated.

Figure 4. The current chart shows the variation of the CPU
usage percentage over the increasing dimensions (in terms
of number of modes used) of the system. In blue the lin-
ear regression is reported. Notice the linearity of the rela-
tionship between the CPU usage and the number of modes
used by the system.

• String-plate model: this panel is visible when the
”string-plate model” option is selected in the model
selection menu. It allows to manipulate the follow-
ing parameters of the string-plate model: the fre-
quency dependent damping, the frequency indepen-
dent damping of both the string and the plate, the
radius of the string and also where the excitation is
applied and from where the output is extrapolated.

• Keyboard: The keyboard component is a simple
graphical representation of the notes currently ac-
tive.

4. PERFORMANCE ANALYSIS

In order to establish which are the optimal conditions of the
software and which are the limits, an analysis of the plu-
gin’s performance is conducted. Such analysis is mostly
related to the global dimension of the system in terms of
modes, which should be respected to have an effective
result. The test is conducted on a laptop with installed
the operating system ”Microsoft Windows 10 Home”, us-
ing a processor ”Intel(R) Core(TM) i7-8750H CPU @
2.20GHz”. The performance of the plugin is monitored
by means of the task manager in the performance section,
where the current usage of CPU of the computer is con-
stantly displayed in terms of percentage. Without using the
plugin, the amount of CPU used is around 6%. This is due
to the working of other parallel processes of the system and
could be considered as the offset percentage of our analy-
sis. Consequently, the CPU usage is registered consider-
ing systems of different dimensions. The chart in Figure 4
clearly shows the linearity of such relation between CPU
usage and number of modes used. Consequently, a more
accurate procedure based on covariance and Pearson’s cor-
relation coefficient is carried out [15]. The covariance be-
tween the CPU usage values and the number of modes used
is expressed as 𝜎𝐶,𝑀 = 𝐸(𝐶 · 𝑀) − 𝐸(𝐶) · 𝐸(𝑀) =
6165.909 − 9.818182 · 531.8182 = 944.4215. Here 𝐶
is the variable regarding the CPU usage values, 𝑀 is the
variable related to the number of modes used, 𝐸(𝐶) is the



Figure 5. The current bar chart shows how the performance
of a chord is affected by the register (for higher ones the
computation required is lower, while conversely for lower
ones it is required a higher level of CPU usage) and by the
instrument. The CPU usage of the model composed of two
stiff strings is reported with blue bars, while for the model
composed of a string and a plate the bars are orange. It
is easy to visualize how the first one is still suited for a
real-time application even for more than one note played
simultaneously. Conversely, the second one quickly ”ex-
plodes” for lower registers and consequently it is supposed
to be played monophonically.

mean of CPU usage samples, 𝐸(𝑀) is the mean of the
number of modes used samples and finally 𝐸(𝐶 · 𝑀) is
the mean of the product between the samples of CPU us-
age and the samples of number of modes. Consequently,
the Pearson’s correlation coefficient can be easily found as
𝜌𝐶,𝑀 =

𝜎𝐶,𝑀

𝜎𝐶 ·𝜎𝑀
= 944.4215

337.5491·2.970271 = 0.941961 (a value
close to 1.0 further confirms the hypothesis of a linear rela-
tion). The linear regression line [15] can be seen in Figure
4.

4.1 Analysis of Chords and Multiples Notes

The current analysis is particularly useful to study the be-
haviour of the system in case of a chord and consequently
with more than one note active at the same time. Obvi-
ously, the number of total number of modes is additive,
considering the number of modes used by the single notes,
separately. This property makes very easy to understand if
a given chord is computationally sustainable in real-time
or not and the total amount of CPU usage necessary. In
this analysis, the chord C Major in different registers were
arbitrarily chosen and it is found how the performance is
strongly affected by both the register and the type of model
used (as can be seen in figure 5). It is easy to notice that for
lower registers, a higher amount of CPU usage is required
and that the plate is much heavier from a computational
point of view than a string.

5. CONCLUSIONS

The plugin developed in the current work demonstrates
how it is possible to implement software for real-time syn-
thesis of audio using models based on physical laws and
numerical solutions. In fact, it is noticed how the increase
of the dimension of the system (in terms of number of

modes used) brings to a linear increment of the CPU us-
age, at least inside the range of values where the tests were
carried out (between 0 and 1200 modes). Moreover, non-
linear elements were successfully introduced in the con-
nection between the different sub-systems of the connected
models. An objective for future work is the creation of
a real-time plugin representing a model composed of a
higher number of subsystems.

6. ACKNOWLEDGEMENTS

This work is supported by the European Research Coun-
cil (ERC), under the European Union’s Horizon 2020
research and innovation programme, grant 2020-StG-
950084-NEMUS

7. REFERENCES

[1] D. Bernoulli, “Réflexions et éclaircissemens sur les nouvelles vibra-
tions des cordes,” Mémoires de l’Academie Royale de Berlin, vol. 9,
pp. 147–195, 1753.

[2] J. B. Fourier, “Théorie du mouvement de la chaleur dans les corps
solides,” Mémoires de l’Academie Royale des Sciences de l’Institut
de France, vol. 4, pp. 185–556, 1819.

[3] S. Bilbao, “Modal synthesis,” https://ccrma.stanford.edu/∼bilbao/
booktop/node14.html, 2006.

[4] K. Van Den Doel and D. K. Pai, “Modal synthesis for vibrating ob-
jects,” Audio Anectodes. AK Peter, Natick, MA, pp. 1–8, 2003.

[5] Z. Ren, H. Yeh, and M. C. Lin, “Example-guided physically based
modal sound synthesis,” ACM Transactions on Graphics (TOG),
vol. 32, no. 1, pp. 1–16, 2013.

[6] J. D. Morrison and J.-M. Adrien, “Mosaic: A framework for modal
synthesis,” Computer Music Journal, vol. 17, no. 1, pp. 45–56, 1993.

[7] IRCAM, “Modalys,” https://support.ircam.fr/docs/Modalys/3.4.1/co/
publication-web.html, 2014.

[8] M. Ducceschi and C. Webb, “Plate reverberation: Towards the de-
velopment of a real-time plug-in for the working musician,” in Pro-
ceedings of the International Conference on Acoustics (ICA 2016),
Buenos Aires, Argentina, September 2016.

[9] S. Bilbao, C. Desvages, M. Ducceschi, B. Hamilton, R. Harrison-
Harsley, A. Torin, and C. Webb, “Physical modeling, algorithms, and
sound synthesis: The ness project,” Computer Music Journal, vol. 43,
no. 2-3, pp. 15–30, 2020.

[10] M. Ducceschi and S. Bilbao, “Non-iterative, conservative schemes
for geometrically exact nonlinear string vibration,” in Proceedings
of the 23rd International Conference on Acoustics (ICA19), Aachen,
Germany, September 2019.

[11] M. Ducceschi and C. Touzé, “Modal approach for nonlinear vibra-
tions of damped impacted plates: application to sound synthesis of
gongs and cymbals,” Journal of Sound and Vibration, vol. 334, pp.
313–331, 2015.

[12] C. J. Webb and S. Bilbao, “On the limits of real-time physical mod-
elling synthesis with a modular environment,” in Proceedings of the
International Conference on Digital Audio Effects (DAFx15), Trond-
heim, Norway, December 2015.

[13] S. Bilbao, Numerical Sound Synthesis: Finite Difference Schemes
and Simulation in Musical Acoustics, 1st ed. Wiley, 2009.

[14] T. H. Park, Introduction to digital signal processing computer musi-
cally speaking. World Scientific Publishing Company, 2010.

[15] E. L. Piazza, Probabilità e statistica (Probability and Statistics). Es-
culapio, 2014.

https://ccrma.stanford.edu/~bilbao/booktop/node14.html
https://ccrma.stanford.edu/~bilbao/booktop/node14.html
https://support.ircam.fr/docs/Modalys/3.4.1/co/publication-web.html
https://support.ircam.fr/docs/Modalys/3.4.1/co/publication-web.html

	 1. Introduction
	 2. Implemented Models
	2.1 Isolated Systems
	2.1.1 Model Coefficients

	2.2 Modal Decomposition
	2.3 Coupled Subsystems
	2.4 Loss, Forcing and Output
	2.5 Finite Difference Schemes

	 3. C++ model implementation
	3.1 Plugin Description

	 4. Performance Analysis
	4.1 Analysis of Chords and Multiples Notes

	 5. Conclusions
	 6. Acknowledgements
	 7. References

