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Abstract: The simulation of string vibration is of fundamental importance in musical
acoustics. If the vibration amplitude is large then nonlinear phenomena, resulting from large
deformations, cannot be neglected, and lead to perceptually salient features. Energy-conserving
simulation algorithms found in the literature rely on tailored discretisation choices, making them
model–specific. Recently, energy quadratisation–based techniques have been developed, under
the assumption that the potential energy is single-signed. These methods allow for the solution
of a variety of different nonlinear systems with the same time-stepping procedure, requiring only
the evaluation of a specific nonlinear potential. Moreover, they possess an exact numerical energy
conservation property, and permit efficient operation. Such methods were previously employed
for solving nonlinear string models. In this paper, nonlinear models of transverse string vibration
are first semi-discretised in space by means of both finite differences and modal methods. The
resulting equations are solved through the use of the Scalar Auxiliary Variable (SAV) technique.
Results are then compared against those obtained with model – specific numerical integrators
in terms of efficiency and accuracy.

Keywords: Numerical Methods; Hamiltonian Dynamics; Geometric Mechanics

1. INTRODUCTION

The nonlinear vibration of strings is of great perceptual
importance, and has seen extensive investigation at the
theoretical level. In the earliest simplified models, due to
Kirchhoff (1883) and Carrier (1945), longitudinal motion
is averaged over the string length, leading to a trans-
verse wave equation with a global amplitude-dependent
wave speed. The so-called Kirchhoff-Carrier model was
subsequently intensively investigated by Oplinger (1960),
Anand (1969), Dickey (1969), Dickey (1980), Gough (1984)
and others. More generally, a complete model must in-
clude a pointwise coupling between the motion in the two
transverse polarisations with longitudinal motion. Such
a model is presented by Morse and Ingard (1968), and
more general forms have been investigated by Narasimha
(1968) and Kurmyshev (2003). Such pointwise nonlinear
models, often reduced to one transverse polarization, have
been used in various applications in sound synthesis and
musical acoustics—see, e.g., Bank and Sujbert (2005) and
Chabassier et al. (2013).

Numerical solution techniques have been presented by var-
ious authors, especially in the case of the Kirchhoff-Carrier
model, where methods based on Volterra series have been
applied—see Roze and Hélie (2008). A major consideration
for all models of nonlinear string vibration is ensuring
numerical stability, particularly as loss is generally quite
low in musical strings. To this end, methods based on
numerical conservation, and more generally dissipation,
of a “pseudo-energy” (henceforth simply “energy”) have

been used extensively for finite difference schemes for the
Kirchhoff-Carrier model (Bilbao and Smith III (2005)) and
for more general pointwise nonlinearities in strings (Bilbao
(2005), Chabassier et al. (2013)). In the most general case
of a geometric string nonlinearity, such schemes are fully
implicit, requiring iterative numerical methods such as
Newton-Raphson for solution. The computational cost can
be prohibitively high. In some cases, when the geometric
nonlinearity is simplified to be of cubic type, linearly im-
plicit resolution is possible, avoiding the need for iterative
solvers. However, linearly implicit solvers only became
available for energy dissipative schemes with the advent
of so-called “quadratised” schemes, such as the Invariant
Energy Quadratisation (IEQ) approaches. (Yang and Han
(2016); Yang et al. (2017)). See Ducceschi and Bilbao
(2022) for the present case of nonlinear string vibration.
Finally, scalar auxiliary variable (SAV) approaches (Shen
et al. (2018)) indicate the possibility of fully explicit and
energy-stable resolution, see Bilbao et al. (2023). Further
explicit methods for a class of nonlinear ordinary differen-
tial equations were given by Lopes et al. (2015).

There is thus a multiplicity of exactly energy-conserving
(more generally strictly dissipative) methods available in
the case of nonlinear string vibration—all capable of ensur-
ing numerical stability, but with great differences in terms
of performance. Part of the focus of this short contribution
is to investigate distinctions between different designs of
numerical methods. Two distinct models of transverse-
only nonlinear string vibration in a single polarization



are presented in Section 2, including the Kirchhoff-Carrier
model, and that simplified from the more general point-
wise nonlinear model from Morse and Ingard (1968). Loss
and forcing terms are included, and energy balances are
presented in the case of both models. Semi-discrete forms
for both models are presented for both systems in Section
3, using both local spatial difference operations, and exact
modal representations. Energy balances follow through to
this semi-discrete case. Time discretisation strategies are
presented in Section 4—the maintenance of non-negativity
for the discrete time energy leads to numerical stability
conditions. Numerical results are presented in Section
5, illustrating energy balances and convergence results
for both the Kirchhoff-Carrier system and the transverse
pointwise nonlinear system. Some concluding remarks fol-
low in Section 6.

2. MODELS OF NONLINEAR STRING VIBRATION

A general nonlinear model for the transverse vibration of a
stiff string in a single polarization is of the following form:

(ρA∂2
t − L)u = F + δ(x− xi)f(t), (1)

with:

L = T0∂
2
x − EI∂4

x − 2ρA(σ0 − σ1∂
2
x)∂t, (2)

Here, u = u(x, t) : [0, L] × R+
0 → R represents the trans-

verse displacement of a string of length L as a function of
a spatial coordinate x and time t; ∂j

x and ∂j
t represent the

j-th partial derivative with respect of x and t respectively,
and F = F(q) is a generic force density corresponding
to a conservative nonlinear contribution, and depends on
q ≜ ∂xu; it takes on various forms, depending on the
type of model, that will be specified shortly. ρ is the
string’s material density in kg · m−3, A is the string’s
cross-sectional area, and T0 is the tension in N. The
model includes a stiffness term, derived from the Euler-
Bernoulli beam theory, written in terms of the Young’s
modulus E and the moment of inertia I. See Ducceschi
and Bilbao (2016). σ0, σ1 ≥ 0, are dimensionless numbers
regulating, respectively, the frequency-independent and
dependent parts of damping (Bilbao (2009)). This form
leads to a quadratic loss profile in the frequency domain.
More refined loss models, such as the one from Valette and
Cuesta (1993), are not considered here for simplicity. f(t)
is an external forcing term, and δ(x−xi) represents a Dirac
delta function, centered at an excitation location x = xi,
indicating point-wise forcing. The string is assumed simply
supported at both ends, and thus:

u(0, t) = ∂2
xu(0, t) = u(L, t) = ∂2

xu(L, t) = 0. (3)

Models such as (1) extend easily to include coupled motion
in a second polarization. See, e.g., Morse and Ingard (1968)
in the case of a full model, and Rubin and Gottlieb (1996)
and Anand (1969) for the simplified case of the Kirchhoff-
Carrier model.

2.1 Energy Analysis

Given two real-valued, square-integrable functions f(x, t),
g(x, t), defined over the interval [0, L], the spatial inner
product and associated norm may be defined as:

⟨f, g⟩ =
∫ L

0

fg dx, ∥f∥ =
√

⟨f, f⟩. (4)

An energy balance for equation (1) is obtained by taking
the L2 inner product with ∂tu over the domain [0, L]:

ρA⟨∂tu, ∂2
t u⟩−T0⟨∂tu, ∂2

xu⟩+EI⟨∂tu, ∂4
xu⟩−⟨∂tu,F⟩ =

−2ρA(σ0⟨∂tu, ∂tu⟩−σ1⟨∂tu, ∂t∂2
xu⟩)+⟨∂tu, δ(x−xi)⟩f(t).

Using integration by parts and boundary conditions (3),
leads directly to

Ḣ = −2ρA(σ0∥∂tu∥2 + σ1∥∂t∂xu∥2) + ∂tu(xi)f(t). (5)

Here, the total energy takes the form:

H =
ρA

2
∥∂tu∥2 +

T0

2
∥∂xu∥2 +

EI

2
∥∂2

xu∥2 +V, (6)

where V is a nonlinear potential derived from F . When the
source term is not present, the energy is exactly conserved.

2.2 Model Types

The simplest possible choice for F is that of Kirchhoff
and Carrier (Carrier (1945)), where the nonlinearity is
averaged over the string length:

FK = ∂x

(
EA

2L
∥q∥2q

)
, (7)

This expression results from various simplifications and
reproduces the perceptual feature of amplitude-dependent
pitch, or more generally, time variation in pitch or pitch
glides when a loss mechanism is present. See, e.g., Bilbao
(2009).

A more refined model may be obtained by taking a
Taylor series expansion of the potential derived from
the geometrically exact theory of beams, following Morse
and Ingard (1968), which includes both longitudinal and
transverse displacement. For the sake of simplicity in
this short contribution, one may also neglect longitudinal
motion, as in Bilbao (2005), leading to the following form
of the force density:

FT = ∂x

(
EA− T0

2
q3
)
. (8)

in view of the upcoming use of the SAV numerical al-
gorithm (Shen et al. (2018)), it is useful to express the
nonlinear potentials relative to the forces FK and FT,
which are found in the energy expression (6):

VK =
EA

8L
∥q∥4 + α0

2
, (9a)

VT =
EA− T0

8
∥q2∥2 + α0

2
. (9b)

Here, α0 > 0 is an added arbitrary constant shifting the
minimum of the potential, but not affecting the motion.
Notice that VT is non-negative only if EA ≥ T0, which
is always true for musical strings. Therefore, both ex-
pressions for the nonlinear potential energy are positive
semi-definite. The two systems above will be denoted,
respectively, K and T for the remainder of the paper.

3. SEMI-DISCRETISATION

In this section, system (1) will be semi-discretised in
space, yielding a system of coupled ordinary differential
equations (ODEs) in time. To that end, it is first useful to
introduce spatial difference operators. The spatial domain
is divided into N subintervals of length h = L/N , the grid
spacing. Doing this yields N +1 discretisation points. The



continuous function u(x, t) is then approximated by a grid
function ul(t) ≈ u(lh, t), for integer l, l = 1, . . . , N − 1
(values of the grid function at the endpoints l = 0 and
l = N are permanently fixed to zero by the boundary
conditions). ul(t) may be consolidated into an (N − 1) ×
1 vector u(t). A simple approximation D− to a spatial
derivative may be defined as:

D−u = h−1([u⊺, 0]− [0,u⊺])⊺. (10)

Here, D− is rectangular, of dimension N × (N − 1). A
forward-difference operator is defined as D+ = −(D−)⊺,
while approximations to second, and fourth order deriva-
tives are (N −1)× (N −1) matrices, obtained by composi-
tion as: D2 = D+D−; D4 = D2D2. An approximation
to q, of size N points, may be defined as: q = D−u
(Bilbao (2005)). Finally, a discretised version of the Dirac
delta function at the excitation point l0 = floor(xi/h), is
obtained with the column vector j, of length N−1, defined
as:

jl0 = h−1, otherwise 0; (11)

3.1 Semi-Discrete String Formulation

From the definitions above, it is direct to arrive at a semi-
discrete approximation to (1). In view of the application
of the SAV numerical algorithm, it is useful to express it
in terms of the potentials (9), instead of force densities.
Therefore:

ρAü− lu = h−1D+∇qv+ jf, (12)

where the approximation of the linear operator L reads:

l = T0D
2 − EID4 − 2ρA(σ0 − σ1D

2)d/dt, (13)

and v is a suitable discretisation of the nonlinear potentials
VK, VT. In particular, semi-discrete forms of (9) are:

vK =
EAh2

8L
(q⊺q)2 +

α0

2
(14a)

vT =
(EA− T0)h

8
(q2)⊺q2 +

α0

2
, (14b)

where, in the latter equation, the power operator indicates
element-wise raising.

3.2 Energy Analysis

Owing to the chain rule, and to the definitions of the
difference operators, one has:

v̇ = (∇qv)
⊺q̇ = (−D+∇qv)

⊺u̇. (15)

Then, a discrete energy balance is obtained multiplying
equation (12), by hu̇⊺. Through summation by parts, one
gets:

ḣ = −2ρAh u̇⊺(σ0 − σ1D
2)u̇+ hu̇⊺jf(t), (16)

with

h =
ρAh

2
u̇⊺u̇− T0h

2
u⊺D2u+

EIh

2
u⊺D4u+ v. (17)

Thus, the semi-discrete system preserves an energy bal-
ance and, given equations (14), the energy is non negative.

3.3 Quadratisation

A fundamental step of the SAV algorithm consists in the
quadratisation of the nonlinear potential v in the energy
expression, through the transformation: Ψ ≜

√
2v, which

is well defined, given the non-negativity of both vK and
vT. After quadratisation, equation (12) can be expressed
in terms of Ψ:

ρAü− lu = −h−1Ψg + jf ; g ≜ ∇uΨ; (18)

where the following relation has been employed:

D+∇qv = −∇uv = −Ψ∇uΨ. (19)

The energy balance is unchanged from equation (16), while
the expression for conserved energy becomes:

h =
ρAh

2
u̇⊺u̇− T0h

2
u⊺D2u+

EIh

2
u⊺D4u+

Ψ2

2
, (20)

and, is clearly non-negative.

3.4 Modal Form for the K system

As an alternative approach, system K may be semi-
discretised by means of a modal expansion. To that end,
the continuous solution u is rewritten as a superposition
of time-dependent modal displacements:

u(x, t) =

M∑
m=1

wm(x)rm(t). (21)

Here M is the number of modes, theoretically infinite, but
truncated to a finite integer according to Nyquist require-
ments. Therefore, equation (21) can be rewritten in vector
form: u(x, t) = w⊺(x)r(t). The corresponding mode shapes
w are found by solving the associated eigenvalue problem
of the stiff string under simply supported boundary condi-
tions, as seen in e.g. Bilbao (2004). Thus: wm(x) =

√
2/L ·

sin(mπx/L). Substituting equation (21) into (1), with the
force expression given by (7), left-multiplying by w and
taking an L2 inner product over the string length yields:

r̈+Qṙ+Ω2r = − EA

2LρA
(r⊺Sr)Sr+

1

ρA
w(xi)f(t), (22)

which is the equation describing the time evolution of the
modal system. Here, S, Ω and Q are M × M diagonal
matrices, defined as:

[S]m,m = (mπ/L)2,

[Ω]m,m = (mπ/L)
√
T0/ρA+ (mπ/L)2EI/ρA,

[Q]m,m = 2(σ0 + (mπ/L)2σ1).

An energy balance is obtained by multiplying equation
(22) by ρAṙ⊺:

˙̃h = −ρA ṙ⊺Qṙ+ ṙ⊺w(xi)f(t). (23)

Where:

h̃ =
ρA

2
ṙ⊺ṙ+

T0

2
r⊺Sr+

EI

2
r⊺S2r+

EA

8L
(r⊺Sr)2︸ ︷︷ ︸
ṽ

. (24)

A quadratised form of system (22) may be obtained by
considering the nonlinear potential ṽ in equation (24), and

writing EA
2LρA (r⊺Sr)Sr = ∇rṽ. By defining Ψ̃ ≜

√
2ṽ+ α0

and substituting into equation (22), one obtains the system
in quadratised form:

r̈+Qṙ+Ω2r = −Ψ̃g̃+(ρA)−1w(xi)f(t); g̃ ≜ ∇rΨ̃. (25)

Note that here, the shift constant α0 has been included
directly into the expression for Ψ̃ for brevity. Equation (25)
has a form analogous to system (18), and can be solved
through the same time-stepping method.



4. TIME DISCRETISATION

Equations (18) and (25) represent two systems of coupled
ordinary differential equations, which will now be inte-
grated in time. To this end, time is discretised with a time
step k, yielding a sample rate fs = 1/k. Then, a continuous
function u(t) is approximated at time step t = nk by the
time series un, where n ∈ N is the time index. The time
difference operators are then introduced, as:

δ±u
n = ±(un±1−un)/k, δ·u

n = (un+1−un−1)/2k. (26)

The second-difference operator is obtained by combining
the operators above:

δ2 = δ+δ− . (27)

Finally, averaging operators can be written as:

µ±u
n = (un±1 + un)/2, µ·u

n = (un+1 + un−1)/2. (28)

The same formal definitions apply to series defined on
interleaved time grids, for example: δ+Ψ

n−1/2 = (Ψn+1/2−
Ψn−1/2)/k, where Ψn+1/2 is an approximation to the con-
tinuous function Ψ(t) at times t = (n+1/2)k. Interleaved
grids are commonly found in the literature, see e.g. Yee
(1966).

4.1 Numerical Solver

Following Bilbao et al. (2023), a possible discretisation of
system (18), based on the SAV method is:{

(ρAδ2 − λ)un = −h−1µ+Ψ
n−1/2gn + jfn

δ+Ψ
n−1/2 = (gn)⊺δ·u

n.
(29)

Here, Ψn−1/2 is treated as an independent time series that
is updated at each time-step. This defines a three-step
scheme, where gn can be computed analytically as:

gn = ∇uv
n/

√
2vn, (30)

and division by zero can be avoided by shifting the
potential minimum through the constant α0 in equation
(14). λ is a suitable time discretisation of the linear
operator l, which can take different forms. Here, it was
chosen:

λ = T0D
2 − EID4 − 2ρA(σ0Iδ· − σ1D

2δ−). (31)

Note the use of the first-order difference operator δ−.
This choice is justified as it allows building the system
update matrix in the form of a diagonal matrix plus a
rank-1 perturbation, as will be shown shortly. This form
is useful when applying the fast inversion formula given
later. Second-order-accurate approximations in time are
also available, for instance, by applying a centred time
difference δ· to the frequency-dependent damping term.
Nevertheless, form (31) ensures a good balance between
the accuracy and the efficiency of the numerical scheme
since damping terms and usually small. An energy balance
for (29) is obtained by multiplying on the left by h(δ·u

n)⊺.
Then, following the identities in Bilbao (2009), one gets:

δ+h
n− 1

2 + En = h(δ·u
n)⊺jfn,

with
En = 2ρAh(δ·u

n)⊺(σ0I− σ1D
2)δ·u

n; (32)
and the energy takes the form

hn−
1
2 =

ρAh

2
(δ−u

n)⊺
(
I− kσ1D

2
)
δ−u

n − T0h

2

(un)⊺D2un−1 +
EIh

2
(un)⊺D4un−1 +

(Ψn− 1
2 )2

2
,

(33)

where I is the identity matrix. As opposed to the semi-
discrete energy (20), expression (33) is not immediately
positive semi-definite. Nevertheless, because the nonlinear
potential is non-negative, a stability condition for scheme
(29) may be obtained by inspecting the linear part alone.
Therefore, a sufficient condition for stability is:

h ≥
√(

β +
√
β2 + 16(EI/ρA)2k2

)
/2, (34)

where β = 4σ1k + EIT0/(ρA)2.

4.2 Update Form

To obtain the update equation for scheme (29), one ex-
pands the operators, and substitutes the second equation
into the first one; thus:

Anun+1 = Bun+Cnun−1−k2h−1gnΨn−1/2+ jfn. (35)

The matrices take the form:
An = ρA(1 + σ0k)I+ ζn(ζn)⊺

B = 2ρAI+ (T0k
2 + 2ρAσ1k)D

2 − EIk2D4

Cn = ρA(1− σ0k)I− 2ρAσ1kD
2 + ζn(ζn)⊺,

(36)

where ζn = (k/2
√
h)gn. As mentioned above, the update

matrix An has the form of a diagonal matrix plus a
rank-1 perturbation and admits a fast inversion through
the Sherman-Morrison formula (Sherman and Morrison
(1950)). Ψn+1/2 is then computed via the second equation
in (29), once (35) is solved for un+1.

4.3 Modal Scheme

The SAV method can be applied to the modal system (25).
Therefore, a discrete version reads:{

(δ2 − λ̃)rn = −µ+Ψ̃
n−1/2g̃n + (ρA)−1w(xi)f

n

δ+Ψ̃
n−1/2 = (g̃n)⊺δ·r

n,
(37)

with:
λ̃ = −Ω2 −Qδ· . (38)

g̃n can be computed analytically, as seen in equation (30):

g̃n = ∇rṽ
n/

√
2ṽn, and division by zero can be avoided by

shifting the potential through the constant α0. An energy
analysis, not shown here for brevity, is run by multiplying
the first equation in (37) by ρA(δ·r

n)⊺, and yields a
stability condition that links the sampling step k to the
highest eigenfrequency insideΩ: k ≤ 2/ωM . This condition
can be employed to retrieve a limit for the number of
modes M , related to the sampling frequency. Scheme (37)
can be expanded to obtain an update equation entirely
equivalent to (35).

5. NUMERICAL TESTING

5.1 System K

Figure 1 displays the time solution, the energy error and
the spectrogram of system (29), with potential (14a). Here,
the energy error is defined as:

∆Hn+1/2 = 1− (H
n+1/2
tot )/(h1/2) (39)

whereH
n+1/2
tot = hn−1/2+

∑n
ν=0 E

νk. From the second plot
it is observed that the energy is indeed conserved, with an



Fig. 1. Waveform, energy error and spectrogram of system
(29) with potential K. Physical parameters are: ρ =
8 × 103 Kg/m3, T0 = 75 N, A = 3.97 × 10−7 m2,
E = 174 GPa, I = 1.25 × 10×10−14 m4, σ0 = 0.92,
σ1 = 2.86 × 10−4. The output point xo is exactly at
half string. The system is initialised in its first mode
of vibration, with an amplitude of 1.5 cm, and run at
OF = 10.
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Fig. 2. Convergence test for system K. The target solution
is obtained at OF = 512. The SAV scheme is run at
OF = 2a, with a = [0, 8] integer. String parameters
and initialisation are as listed in Figure 1. The dashed
plot in the first panel represents a line with a slope of
-1, for comparison.

error within the order of machine accuracy. Note that the
upward drift is entirely related to round-off effects due to
finite precision, not discussed in this paper. The different
time zooming on the third panel allows to show the pitch
glide provided by the nonlinear term; nonlinear behaviour
is also highlighted by the presence of a second peak in the
spectrum.

A convergence test is now performed. A “target” solution
is computed with an energy-conserving, model-specific
integrator from Bilbao (2009), run at a high oversampling
factor (OF). Its form is not reported here for brevity. Here,
OF is an integer factor such that the final sample rate is
OF×44.1 kHz (44.1 kHz is a standard audio sample rate).
Then, an error is computed, between the target solution
and solutions computed with system (29), run with an

Fig. 3. Waveform, energy error and spectrogram of system
(29) with potential T. String parameters are as listed
in Figure 1. The system is initialised in its first mode
of vibration, with an amplitude of 1 cm, and run at
OF = 10.
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Fig. 4. Convergence test for system T. The target solution
and the SAV scheme are run at the same OFs listed in
Figure 2. String parameters are as listed in Figure 1.
The string is initialised in its first mode of vibration,
with an amplitude of 1 cm

increasing OF. Results are displayed in Figure 2. The
first panel represents the error of scheme (29), at time
nk = 0.03 s, computed at an increasing OF and plot in
logarithmic scale along with a line of slope −1. The error
is defined as En = ûn−un, where û is the target solution.
The second panel shows the evolution of the error over time
for three solutions, computed at different sample rates.
An increasing offset of 5 × 10−8 is added to the plots to
improve readability. A comparison with the line of slope -1
indicates that the error decreases with an order k, making
the scheme first-order accurate. This is expected, given the
explicit discretisation of the frequency-dependent damping
term, and the fourth-order spatial operator, that lead to
the stability condition (34). Similar results were obtained
with the modal scheme (37), and are not shown here for
brevity.
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Fig. 5. Evolution of Ψ over time for System T. The string
was initialised with increasing amplitudes of 1, 2 and
3 cm, and the scheme was run at OF = 10. The string
physical values are as in Figure 1.

5.2 System T

Figure 3 shows the temporal evolution, the energy error
and the spectrogram of system (29), with potential (14b).
It is possible to see that this potential introduces a stronger
nonlinear behaviour, which is now also clearly visible from
the time domain plot. Energy is still conserved; however,
the error presents more oscillations than in the previous
case.

The same convergence test employed for system K was run
in this case. As before, the target solution is computed with
an energy conserving, model-specific method proposed by
Bilbao (2005), run at a high OF. Results are displayed in
Figure 4; in the second panel, an increasing offset of 5 ×
10−6 is added to the plots to improve readability. The time
evolution of the error now presents higher oscillations than
for system K. However, first order-accuracy still emerges
from the first panel, indicating numerical convergence of
the SAV algorithm.

During testing of system T, an anomalous behaviour of the
auxiliary variable Ψn−1/2 was observed, which is reported
in Figure 5. Here, system T is initialised with different
amplitudes, and the same potential shift α0 = 3×10−5. For
higher initial displacements, Ψ does not decay at its the-
oretical minimum,

√
α0. This behaviour was not observed

in system K; furthermore, for higher OFs, the Ψ minimum
converges at the theoretical minimum. Nevertheless, this
anomalous effect requires further investigation.

6. CONCLUSION

Two discrete models depicting nonlinear transverse vi-
brations in strings were introduced: the Kirchhoff-Carrier
model and a simplified transverse-only version derived
from Morse and Ingard’s pointwise model. Spatial dis-
cretization of the equations was achieved through the use
of finite difference operators, and exact modal represen-
tations in the case of the Kirchhoff-Carrier model. The
Scalar Auxiliary Variable (SAV) method was subsequently
employed, initially by approximating the nonlinear en-
ergies through a scalar auxiliary state variable, followed
by temporal integration of the resulting systems using a
commonly used explicit time-stepping procedure. Compar-
ative analysis was conducted with respect to benchmark
integration techniques found in the existing literature.
The experimental findings demonstrated that the SAV
algorithm converges towards the model-specific methods
when the sampling rate is sufficiently high. Notably, in the
case of the simplified Morse-Ingard model, an anomalous

behaviour of the auxiliary variable was observed, which is
mitigated at higher sampling rates. However, it warrants
further investigation.
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