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ABSTRACT
This study presents a methodological framework to establish a standardised baseline for comparing
the vibrational characteristics of thin and thick rectangular orthotropic plates in acoustics. The
research addresses the inherent difficulties associated with varying plate parameters by proposing
the use of non-dimensional frequencies for comparative assessments. It will be shown that, under
the thin-plate approximation, plates with identical aspect ratios, boundary conditions, and elastic
constant ratios exhibit identical non-dimensional modal frequencies and shapes. The proposed
methodology involves generating baseline non-dimensional frequencies and modal shapes via
numerical simulations for a reference plate with specified parameters. Subsequent analysis
entails systematically varying plate thickness while monitoring deviations of non-dimensional
frequencies from the baseline. This process finally allows to determine up to which mode number
the discrepancy in the dimensionless frequency between the baseline and the ensuing modelled
plates can be confined within certain tolerance values. Notably, the comparison is conducted on
an eigenshape basis, thereby circumventing the consideration of dimensional frequencies. This
approach offers a structured framework for comparative analysis, centred on identifying modes
exhibiting thin behaviour regardless of dimensional frequencies, stressing the objectivity of the
presented methodology.

1. INTRODUCTION

Plates are structural elements found across various domains and disciplines, and musical
acoustics is no exception. Most acoustic stringed instruments can radiate sound efficiently thanks
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to a plate-like structure. Examples abound, from keyboard instruments such as the harpsichord
and the piano presenting large soundboards, to guitar-like instruments including a back and a
top plate and bowed string instruments with arched plates. In these cases, the plates are almost
exclusively built from tonewoods, inheriting an orthotropic property along the three main axes
of tree logs: radial, longitudinal and tangential [1]. The design process of the string instrument
deals with wood’s material properties and the soundboard’s geometric properties, both of which
shape the instrument’s tone. Designing soundboards and plates to satisfy the desired acoustical
and musical targets is, thus, a fundamental problem in instrument making, and it can be aided by
modelling.

The mathematical models for the plates fall into two main categories: thin-plate and thick-
plate models [2]. Usually, a thin-plate model can be derived from a more general thick-plate model
when the thickness becomes small. This is true for the Kirchhoff-Love thin plate model, a special
case of the more general model by Mindlin and Reissner [3, page 486]. The former is still preferred
in many cases because it is more easily understood, its dispersion relation is easily derived, and
it is more easily implemented in simulation. This preference is clear in musical acoustics, where
plates and soundboards are commonly described as being “thin” [4–7]. Whilst this is a convenient
idealisation, thin and thick are frequency-dependent qualities: a thin-plate model may do well
in describing the behaviour of a plate in the lower frequency range and fail spectacularly in the
mid-to-high range.

Computing the dispersion relations of the two models using the available model parameters
for a given plate is one way of assessing the models’ mutual deviation in the frequency
domain [2, 8]. This method, however, neglects the role of the surface area and boundary
conditions in yielding the modal frequencies, which ultimately determine the acoustics of the
plate. Clearly, the size of the plate matters in determining the frequency range where the thin
approximation holds. Piano soundboards up to eight millimetres thick, for example, may be
considered “thin”, but guitar top boards would seldom be thicker than two or three millimetres.
Some authors have identified length-to-thickness ratios, which may be used as practical advice for
the analysis of plate vibration. For instance, in [9], eight is given as a lower bound for such a ratio,
below which the thick-plate effects cannot be neglected. It may then be useful to incorporate
the role of the surface area to assess the model’s deviation within the modal domain: this work
explores such a possibility through dimensional analysis. It will be shown that, in the thin-plate
approximation, plates presenting the same boundary conditions, aspect ratio and elastic constant
ratios also present the same non-dimensional frequencies and modal shapes when the non-
dimensionalisation is performed according to the geometric parameters such as the thickness
and the surface area. Various case studies are shown for plates differing in size and thickness. This
approach offers a structured framework for comparative analysis, centred on identifying modes
exhibiting thin behaviour regardless of dimensional frequencies.

2. THEORETICAL BACKGROUND

The vibration of an orthotropic plate can be described via the Mindlin-Reissner model. This is a
system of three equations describing the time evolution of the flexural displacement and two shear
angles. Let the flexural displacement be u = u(x, t ) : V ×R+

0 and the shear angles be Ψ =Ψ◦(x, t ) :
V ×R+

0 where ◦ may denote either x or y . Here, x ∈ V ⊆ R2 are the spatial coordinates, and V is
the domain of definition, left unspecified for the moment. Here, and in what follows, x denotes
the longitudinal orthotropic direction, y is radial, and z is tangential. In quarter-sawing, z is the
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direction along the thickness of the board. With this notation, the system reads [2]:

ρh3

12
∂2

tΨx = D1∂
2
xΨx + D4

4
∂2

yΨx +
(

D2

2
+ D4

4

)
∂x∂yΨy −κ2Gxzh (Ψx +∂x w) , (1a)

ρh3

12
∂2

tΨy = D3∂
2
yΨy + D4

4
∂2

xΨy +
(

D2

2
+ D4

4

)
∂x∂yΨx −κ2Gy zh

(
Ψy +∂y w

)
, (1b)

ρh∂2
t w = κ2Gxzh∂x(Ψx +∂x w)+κ2Gy zh∂y (Ψy +∂x w) . (1c)

The model depends on four rigidity constants, denoted by D◦, two shear moduli G◦, the shear
correction factor κ ≈ 0.9, the thickness of the plate h, assumed constant throughout V , and the
volume density ρ. The rigidity constants are defined in terms of the Young’s moduli as follows:

D1 := Exh3

12(1−νx yνy x)
, D3 := Ey h3

12(1−νx yνy x)
, D4 := Gx y h3

3
, D2 := νy xExh3

6(1−νx yνy x)
. (2)

Note that, because of the symmetry in the compliance matrix, νy xEx = νx y Ey , and hence one
out of two Poisson’s ratios is fixed through this relation. Lower-order theories may be derived by
simplifying Mindlin-Reissner model (Eq. 1). In the thin-plate approximation, the inertia terms
of the cross sections are neglected, and furthermore, the cross sections are assumed to remain
normal to the plate’s central lines, leading toΨ◦ =−∂◦w , where ◦ is either x or y . Thus, using these
approximations, Equation 1a and Equation 1b can be substituted in Equation 1c, which becomes
the Kirchhoff-Love equation:

ρh∂2
t w =−D1∂

4
x w − (D2 +D4)∂2

y∂
2
x w −D3∂

4
y w. (3)

2.1. Dispersion Relations

Computing the dispersion relations of Eq. 1 and Eq. 3 is one common way of assessing the
reliability of the thin-plate approximation for a given plate. Dispersion relations assume that the
plates are defined on an unbounded domain, such that V = R2 for this analysis. For the Mindlin-
Reissner model, the dispersion relation is obtained by substituting a test solution of the form:

u :=


Ψx

Ψy

w

=


Ψ̂x

Ψ̂y

ŵ

e j (ωt+k·x) := ûe j (ωt+k·x) (4)

in Eq. 1. Here, the “hat” variables are (generally complex) constant amplitudes. The vector k :=
[kx ,ky ]⊺ denotes the vector of wavenumbers along x and y . Substituting this expression, one gets:(

K(kx ,ky )−ω2M
)

û = 0, (5)

for appropriate mass and stiffness matrices M,K, not given here for brevity. The matrices are 3×3,
so the dispersion relation presents three branches corresponding to the three eigenvalues of the
equation above. The three eigenvalues may be labelled ω2

û ,ω2
Ψ̂x

,ω2
Ψ̂y

as, at low wavenumbers,

their behaviour is mostly dominated by the corresponding dynamic variable. Although all three
dynamic variables contribute to each branch, this is a convenient labelling system. For the
Kirchhoff-Love model, the dispersion relation is obtained analogously as:

ω2ρhŵ = (D1k4
x +D3k4

y + (D2 +D4)k2
xk2

y )ŵ . (6)

The dispersion relations for the two models are shown and compared in Figure 1, for plates of
increasing thickness. The top row shows the three branches of the Mindlin-Reissner dispersion
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Figure 1: Dispersion relations. Top row: the three branches of the Mindlin-Reissner dispersion
relation, as per Equation 5. Bottom: The lower branch of the Mindlin-Reissner (grey) against
the Kirchhoff-Love dispersion relation (magenta). The plate elastic constants are typical spruce
parameters, as found in [10, page 96].

Figure 2: Cent deviations, including contour lines, between the lower branch of the Mindlin-
Reissner dispersion relation and the Kirchhoff-Love dispersion relation, as a function of the
wavenumbers kx , ky . The same plates as per Figure 1 are considered. The deviations are defined
as ∆centω := 1200log2(ωK L/ωMR ). A deviation of 100 cents corresponds to one semitone.

relation. One distinctive feature is the presence of non-zero lower bounds for two branches: these
bounds are “cutoff” frequencies analogous to the cutoff frequency observed in the Timoshenko
beam [11, 12]. They can be interpreted as frequencies below which the shear angle effects are
minimal. They are recovered by computing the limit of the dispersion relation for vanishing kx ,ky ,
and are:

ω0x := h−1
√

12κ2Gxzρ−1, ω0y := h−1
√

12κ2Gy zρ−1. (7)

These expressions are inversely proportional to the thickness, meaning that, as h increases, they
become increasingly smaller, enhancing the thick-plate effects at progressively lower frequencies.
When the thickness is h = 5 mm, for typical tonewood elastic constants (see e.g. [10, page 96]),
such cutoff frequencies are found well above 10 kHz. Comparing the lower branch of the Mindlin-
Reissner dispersion relation against the dispersion relation of Kirchhoff-Love, some noticeable
differences take place for moderately thick plates (h = 1 cm) for frequencies well within the audible
range. Such differences become evident at even lower frequencies for thicker plates (h = 3 cm),
though such large thicknesses are never found in musical instrument plates and soundboards. The
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cent deviation between the frequencies of the lower branch of the Mindlin-Reissner dispersion
relation against Kirchhoff-Love is offered in Figure 2, as a function of the wavenumbers kx , ky .
When h = 5 mm, differences of at least one semitone are observed for relatively low wavenumbers
(k◦ ≈ 30).

As explained above, dispersion analysis is carried out assuming an unbounded domain.
In reality, a quantisation of the wavenumbers and corresponding frequencies takes place when
boundary conditions are imposed at the plate’s edges, yielding the modes of the system. A mode’s
wavenumber along x and y depends on the respective length along the same direction such that
deviations from the thin-plate model may occur earlier or later in the modal sequence, according
to the plate’s size. The following analysis addresses such differences in the modal domain.

2.2. Non-dimensional model

In what follows, assume a bounded rectangular domain V := [0,Lx] × [0,Ly ], where Lx ,
Ly are the plate’s edge lengths. In order to assess the deviation of a plate’s modes from the
corresponding thin-plate modal basis, it is necessary to rescale the modal frequencies according
to useful scaling parameters. The idea is to group plates into families sharing the same modal
frequencies under scaling, forming an invariant set. Such a set may be obtained immediately
through non-dimensionalisation of the Kirchhoff-Love model, Equation 3. To that end, collect D4

on the right-hand side of Equation 3, and divide both sides by ρh. One gets:

∂2
t u =−γ2

(
(∂4

x +νy x∂
2
x∂

2
y )p + (∂4

y +νx y∂
2
x∂

2
y )q +∂2

x∂
2
y

)
u, (8)

where γ2 := ρ−1h−1D4, and p := D−1
4 D1, q := D−1

4 D3. Following the derivation in [13], non-
dimensionalization proceeds as follows. Define:

u = A
1
2 ū, x = A

1
2 x̄, y = A

1
2 ȳ , t = γ−1 At̄ , (9)

where the overbar indicates non-dimensional variables, and A := LxLy is the plate’s area.
Consequently, Equation 8 transforms into:

∂2
t̄ ū =−

(
(∂4

x̄ +νy x∂
2
x̄∂

2
ȳ )p + (∂4

ȳ +νx y∂
2
x̄∂

2
ȳ )q +∂2

x̄∂
2
ȳ

)
ū, (10)

over the non-dimensional space V̄ = (x̄, ȳ), |,0 ≤ x̄ ≤σ
1
2 , ,0 ≤ ȳ ≤σ−1

2 , where σ := L−1
y Lx denotes

the aspect ratio. Transforming Equation 10 into the frequency domain (with ∂t̄ → j ω̄, ∂x̄ → j k̄x̄ ,
∂ȳ → j k̄ ȳ ) yields the non-dimensional dispersion relationship:

ω̄2 = (k̄4
x̄ +νy x k̄2

x̄ k̄2
ȳ )p + (k̄4

ȳ +νx y k̄2
x̄ k̄2

ȳ )q + k̄2
x̄ k̄2

ȳ , (11)

from which we can deduce the modal frequencies ω̄m,n , as a quantized form of Equation 11. Here,
m,n ∈ N denote a pair of modal indices related to the nodal lines in the x and y directions. For
fixed p, q , the quantisation depends exclusively on the boundary conditions B and the aspect
ratio σ. Thus, the non-dimensional frequencies can be expressed as:

ω̄2
m,n = am,n p +bm,n q + cm,n , (12)

for modal-dependent parameters a,b,c, depending exclusively on B and σ [13].
The scaling suggested in Equation 10 bears important interpretative results. Assuming

constant material parameters (density and elastic constants), the scaling depends exclusively
on the thickness h and the surface area. Thus, the deviation of a plate’s modal frequencies and
shapes from the reference baseline can be tracked as a function of h and A. Since scaling laws are
more conveniently used in this work, it is useful to define a non-dimensional parameter, defined
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in terms of h and A. When the aspect ratio is constant, consider the following non-dimensional
parameter:

η :=
p

A/σh−1 = Lxh−1. (13)

This thickness-to-length parameter has been used to quantify useful ranges of validity of the thin-
plate theory. In [9], such a range is given as:

8 ≤ η≤ 80. (14)

3. METHODS

The analysis presented above derived an expression for the baseline modal frequencies in the limit
of small thickness (Eq. 12). The existence of such a baseline sequence of modes will be tested below
for a family of plates. In what follows, four plates are considered. The plates share the same aspect
ratio σ= 3, but present decreasing surface areas A. The geometric parameters are summarised in
Table 1.

Plate 1 Plate 2 Plate 3 Plate 4

Lx (m) 3.6 1.2 0.6 0.24

Ly (m) 1.2 0.4 0.2 0.08

A (m2) 4.32 0.48 0.12 0.0192

Table 1: Geometric parameters of the plates considered in this analysis. For all plates, the thickness
values are selected as h = 0.5,1,5,10,20,30 mm. To compute the baseline, a thickness of h = 0.1
mm is selected. Note that the plates share the same aspect ratio σ= 3.

ρ Ex Ey Ez Gx y Gxz Gy z νx y νxz νy z

390 10.9 0.64 0.42 0.58 0.59 0.026 0.39 0.49 0.64

kg / m3 GPa GPa GPa GPa GPa GPa

Table 2: Input COMSOL elastic constants, inspired by the table in [10, page 96] for spruce.

The material parameters are the same for the four plates, summarised in Table 2. Note that
these will be used as input parameters for the COMSOL simulations in the thin plate interface and,
hence, include Ez , νxz and νy z although these do not appear explicitly in Eq. 1. These are reference
spruce parameters inspired by the table in [10, page 96].

According to the scaling in Eq. 10, the scaled modal frequencies are obtained as:

ω̄2
m,n := D−1

4 ρh A2ω2
m,n . (15)

Deviations of the results from the baseline can take three forms: distortion of the modal shape,
modal crossings, and change of modal frequency. The Modal Assurance Criterion (MAC) can
quantify the first two. For two column modal shape vectors U,U′ of two modes, the MAC index
is a scalar value defined as [14]:

MAC(U,U′) := |U⊺U′|2
∥U∥2 ∥U′∥2

. (16)

Values close to one indicate that the modal shapes U,U′ are highly correlated.
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Figure 3: Nondimensional baseline modal shapes and frequencies. For visualisation purposes, the
x axis is vertical in the figure. The frequencies are computed to their converged value up the fourth
significant digit, as given. Note that the baseline mode shapes are identified through a Roman
numeral.

Figure 4: First six mode shapes of Plate 4 under various thickness choices h. Blue lines identify
modal crossings.

4. RESULTS AND DISCUSSION

The non-dimensional model is now checked through various numerical experiments. First, the
existence of the baseline modal sequence is checked. The smallest thickness (h = 0.1 mm) from
Table 1 is selected to compute the baseline. The output shapes are scaled frequencies f̄ := ω̄/2π
are presented in Figure 3. The shapes appear in the same sequence for all four plates, and the
scaled frequencies are the same, up to four significant digits, indicating that a common baseline
of modal shapes and frequencies exists, as predicted. Since these shapes and frequencies form
an invariant set, they will be labelled using Roman numerals: I, II, etc. Further significant digits of
precision may be obtained by using smaller meshes, but it is unnecessary for the present purpose.
When the thickness is increased, deviations from the baseline appear. Figure 4 shows the evolution
of the first six modal shapes for Plate 4 (presenting the smallest surface area across all plates).
Modal crossings appear, as well as light distortion of the modal shapes. To assess these differences,
Figure 5 presents the MAC for each pair of modes ranging from mode 1 to 6 for all four plates. As
can be seen, values close to 1 are always reached for Plate 1. Besides, it is worth noticing how
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Figure 5: The MAC comparison to the reference plate thickness. From top to bottom: plate 1, plate
2, plate 3, plate 4.

modal crossings for this plate only occur between modes 3 and 4 when considering values of h
≥ 10 mm. On the other hand, a lower correlation is found when the surface area of the plate is
decreased. This is already noticeable from Plate 2, for which, despite good correlation indexes
reported up to h = 20 mm, no correlation is found for the 6th mode at h = 30 mm, meaning that
only five mode shapes from the reference baseline can be correctly identified within this specific
set of modal vectors. Specifically, the corresponding 6th modal shape is here shifted higher up in
the modal sequence, hence is not present within the compared set. This kind of deviation is even
more frequently noticeable when further reducing the plate’s surface area. Accordingly, the lowest
correlation is observed for Plate 4. Here, while mode crossing can already be observed at h = 0.5
mm, lower correlation values are found for larger h. Finally, a null relationship with the initial
baseline is noted for two of the six compared modal shapes for h = 20 mm and h = 30 mm. A non-
dimensional eigenfrequency analysis is available in Figure 6, where discrepancies are reported in
cents, that is:

∆cent f̄ := 1200log2( f̄basel i ne / f̄ ). (17)

Here, to compare the correct non-dimensional modal frequencies, the order of the first six
eigenshapes at each increased h value was adjusted in accordance with the reference set. Again,
this analysis highlights the fact that plates characterized by smaller surface areas tend to diverge
at lower h values from the reference set of non-dimensional eigenfrequencies. Overall, as it can
be seen, while the lowest differences are observed for Plate 1, the largest deviations appear for
the smaller surface area (i.e. Plate 4). In detail, by taking as an example Mode I, no difference is
observed up to h = 1mm while variations less than 2 cents can still be appreciated up to h = 5mm
for the same plate. On the other hand, differences higher than 2 cents already emerge at h = 1mm
and h = 0.5mm for Mode I in Plates 3 and 4, respectively.
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Figure 6: Deviation of the non-dimensional eigenfrequencies from the reference thickness in cents
among Plates 1 (A = 4.32 m2), 2 (A = 0.48 m2), 3 (A = 0.12 m2), and 4 (A = 0.0192 m2) with
increasing thickness.

4.1. Scaling laws in the modal domain

The analysis above reveals that deviations from the baseline occur more or less rapidly
depending on the plate size. It is useful to plot the deviation of each plate’s modal frequencies for
the reference mode shapes I-VI. This is done in Figure 7. The deviations are absolute, that is:

∆ f̄ := f̄basel i ne − f̄ . (18)

When plotted against the thickness, the deviations seem to follow a power law, such that ∆ f̄ ≈

Figure 7: Non-dimensional frequency deviation as a function of h, for the six reference modes. In
all plots, the four lines represent the four plates. Colour code: red (Plate 1); blue (Plate 2); black
(Plate 3); green (Plate 4). The fits are obtained as ∆ f̄ = ahb .

ahb , where a,b can be found through a fitting procedure. The solid lines in the figure report the
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Mode I Mode II Mode III Mode IV Mode V Mode VI

Plate 1 1.9 1.8 1.9 1.8 1.9 1.8

Plate 2 1.6 1.6 1.6 1.4 1.3 1.3

Plate 3 1.2 1.2 1.3 0.96 0.95 0.99

Plate 4 0.73 0.8 0.86 0.57 0.59 0.64

Table 3: Best fit exponents for the curves in Figure 7. Here, the fitting law is as ∆ f̄ = ahb .

behaviour of such best fits. Table 3 reports the values of the computed exponents as a function of
the plate and modal numbers. A tendency exists leading from quadratic behaviour to square root
as the plate area is decreased. The exponent values are somewhat consistent across all six modes
for the four plates, indicating some kind of robustness of these results. This is interesting, but it
does not help assess the thin-plate behaviour, nor characterise plates sharing the same baseline
modal sequence.

In other words, it is not the behaviour of a given plate one is after but a more general feature
common to all plates belonging to the same group. In the literature, the use of non-dimensional
parameters has been suggested to characterise thin-plate behaviour, such as η as defined in Eq.
13. Note that the surface area and the thickness are natural scaling parameters when the material
properties are kept constant, as evidenced by the analysis in Section 2. When plotted against η,
the modal frequency deviations appear to collapse to one single curve for each mode, as seen in
Figure 8. The fit in this case follows the power law ∆ f̄ = αηβ, where α, β are non-dimensional
parameters. This result is significant because it defines an invariant behaviour for the modal
frequency deviations of all the plates sharing the same modal frequency baseline. Also in Figure
8 are the best-fit results obtained in the recommended range for η, as per Eq. 14. In this case,
the results for the exponents β are given in Table 4: note that the exponents indicate quasi-linear
behaviour. From the figure, a slope change is evident for values of η below 8, indicating the passage
to thick-plate behaviour. In other words, the linearity of the modal frequency deviation from the
baseline could be used to define thin-plate behaviour in the modal domain, although this claim
warrants further investigation.

Figure 8: Non-dimensional frequency deviation as a function of the length-to-thickness paramter
η as per Eq. 13, for the six reference modes. The plot on the right represents the cumulative power
law fit for the six modes in the suggested range as per Eq. 14.
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Mode I Mode II Mode III Mode IV Mode V Mode IV

β -1.3 -1.3 -1.4 -1.1 -1.1 -1.1

Table 4: Best fit results for the scaled modal frequency deviations. Here, ∆ f̄ = αηβ. The fit was
performed on the suggested range for η, as per Eq. 14. Note that the exponents are all quasi-linear,
indicating a way of assessing thin-plate behaviour in the modal domain.

5. FINAL COMMENTS AND CONCLUSIONS

This paper introduced a method for assessing the validity of thin-plate assumptions concerning
orthotropic boards. The approach relies on eigenshape analysis and comparisons of non-
dimensional eigenfrequencies. In contrast to dispersion relation-based analysis on unbounded
domains, this approach enables an investigation of discrepancies in thin-model assumptions for
a family of plates in the modal domain.

The methodology begins with computing a baseline set of modal shapes and dimensionless
eigenfrequencies common to plates sharing the same aspect ratio, boundary conditions and
elastic constant ratios. A two-step analysis follows to evaluate the thin plate assumptions. Firstly,
a comparison of eigenshapes with the baseline modal set is conducted using modal analysis
metrics, such as the Modal Assurance Criterion (MAC), to detect deviations in modal vectors at
larger thicknesses. Secondly, a non-dimensional comparison is performed to identify significant
frequency deviations in scaled eigenfrequencies at increased thickness intervals. The study
demonstrates that:

– Orthotropic plates with the same aspect ratio exhibit identical mode shapes, modal
sequence, and non-dimensional eigenfrequencies under thin-plate assumptions.

– Larger deviations in non-dimensional eigenfrequencies occur for smaller length-to-
thickness values.

– A quasi-linear relationship is observed between deviations in non-dimensional frequencies
and the length-to-thickness parameter under thin plate assumptions.

Plate 3 in the study serves as a case study to illustrate the applicability of the described
methodology. This plate shares dimensions with a typical guitar half-board, commonly thinned
to approximately 3 mm for guitar-making purposes. Analysis reveals that Plate 3 starts exhibiting
modal crossing and larger deviations in non-dimensional eigenfrequencies (> 7 cents) only at
h ≥ 5 mm, indicating good agreement with thin plate model assumptions up to 5 mm. This
assumption aligns with previous research on guitar plate modelling. These findings confirm the
applicability of the introduced comparative analysis for studying orthotropic plates.
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